Bookbot

Hierarchical Relative Entropy Policy Search

An Information Theoretic Learning Algorithm in Multimodal Solution Spaces for Real Robots

Parametri

  • 68pagine
  • 3 ore di lettura

Maggiori informazioni sul libro

The book explores the significance of hierarchical structures in enhancing scalability and performance in motor skill tasks. It introduces the concept of a "mixed option policy," where a gating network selects which option to execute, followed by an option-policy that determines the action. This hierarchical approach enables the learning of multiple solutions to problems. The algorithm is grounded in an innovative information theoretic policy search method that effectively manages the exploitation-exploration trade-off, minimizing information loss during policy updates.

Acquisto del libro

Hierarchical Relative Entropy Policy Search, Christian Daniel, Gerhard Neumann

Lingua
Pubblicato
2014
product-detail.submit-box.info.binding
(In brossura)
Ti avviseremo via email non appena lo rintracceremo.

Metodi di pagamento