Bookbot

Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

Habilitationsschrift

Parametri

Pagine
304pagine
Tempo di lettura
11ore

Maggiori informazioni sul libro

The thesis explores the optimal Bayesian filtering problem by focusing on Gaussian distributions, enabling the development of computationally efficient algorithms. It addresses three specific scenarios: filtering using only Gaussian distributions, employing Gaussian mixture filtering for handling strong nonlinearities, and utilizing Gaussian process filtering in data-driven contexts. For each scenario, the author derives effective algorithms and demonstrates their application to real-world challenges, highlighting the practical implications of these methods in various domains.

Acquisto del libro

Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications, Marco Huber

Lingua
Pubblicato
2015
product-detail.submit-box.info.binding
(In brossura)
Ti avviseremo via email non appena lo rintracceremo.

Metodi di pagamento