The past twenty years have seen an extraordinary growth in the use of quantitative methods in financial markets. Finance professionals now routinely use sophisticated statistical techniques in portfolio management, proprietary trading, risk management, financial consulting, and securities regulation. This graduate-level textbook is intended for PhD students, advanced MBA students, and industry professionals interested in the econometrics of financial modeling. The book covers the entire spectrum of empirical finance, the predictability of asset returns, tests of the Random Walk Hypothesis, the microstructure of securities markets, event analysis, the Capital Asset Pricing Model and the Arbitrage Pricing Theory, the term structure of interest rates, dynamic models of economic equilibrium, and nonlinear financial models such as ARCH, neural networks, statistical fractals, and chaos theory.Each chapter develops statistical techniques within the context of a particular financial application. This exciting new text contains a unique and accessible combination of theory and practice, bringing state-of-the-art statistical techniques to the forefront of financial applications. Each chapter also includes a discussion of recent empirical evidence, for example, the rejection of the Random Walk Hypothesis, as well as problems designed to help readers incorporate what they have read into their own applications.
John Y. Campbell Libri



Focusing on asset pricing, the book offers a comprehensive graduate-level overview that merges theory with empirical evidence. It covers key theories of portfolio choice and their impacts on asset prices, while addressing real-world risk and return patterns. The author highlights the dynamic relationship between theoretical models and empirical challenges, showcasing predictions about both asset prices and investor behavior. Insights from behavioral economics are incorporated, enhancing the understanding of financial decision-making in markets.
"This paper explores the determinants of corporate failure and the pricing of financially distressed stocks using US data over the period 1963 to 2003. Firms with higher leverage, lower profitability, lower market capitalization, lower past stock returns, more volatile past stock returns, lower cash holdings, higher market-book ratios, and lower prices per share are more likely to file for bankruptcy, be delisted, or receive a D rating. When predicting failure at longer horizons, the most persistentfirm characteristics, market capitalization, the market-book ratio, and equity volatility become relatively more significant. Our model captures much of the time variation in the aggregate failure rate. Since 1981, financially distressed stocks have delivered anomalously low returns. They have lower returns but much higher standard deviations, market betas, and loadings on value and small-cap risk factors than stocks with a low risk of failure. These patterns hold in all size quintiles but are particularly strong in smaller stocks. They are inconsistent with the conjecture that the value and size effects are compensation for the risk of financial distress"--National Bureau of Economic Research web site.