Bookbot

Towards Optimally Diverse Randomized Ensembles of Neural Networks

Parametri

Pagine
136pagine
Tempo di lettura
5ore

Maggiori informazioni sul libro

Focusing on ensemble learning, this work highlights the effectiveness of combining diverse neural network classifiers to achieve improved accuracy over single models. It examines how randomizing neural network parameters can create diverse ensembles, enhancing generalization. By employing a sampling strategy akin to Random Forests, the study aims to foster disagreement among network members. Experimental findings reveal that while inducing diversity in ensembles can be beneficial, it does not always guarantee accuracy improvements, making this research valuable for enthusiasts of ensemble methods and neural networks.

Acquisto del libro

Towards Optimally Diverse Randomized Ensembles of Neural Networks, Anna Martin

Lingua
Pubblicato
2017
product-detail.submit-box.info.binding
(In brossura)
Ti avviseremo via email non appena lo rintracceremo.

Metodi di pagamento