The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available.
Shair Ahmad Libri



This book is mainly intended as a textbook for students at the Sophomore-Junior level, majoring in mathematics, engineering, or the sciences in general. The book includes the basic topics in Ordinary Differential Equations, normally taught in an undergraduate class, as linear and nonlinear equations and systems, Bessel functions, Laplace transform, stability, etc. It is written with ample exibility to make it appropriate either as a course stressing applications, or a course stressing rigor and analytical thinking. This book also offers sufficient material for a one-semester graduate course, covering topics such as phase plane analysis, oscillation, Sturm-Liouville equations, Euler-Lagrange equations in Calculus of Variations, first and second order linear PDE in 2D. There are substantial lists of exercises at the ends of chapters. A solutions manual, containing complete and detailed solutions to all the exercises in the book, is available to instructors who adopt the book for teaching their classes.
Lotka-Volterra and related systems
- 236pagine
- 9 ore di lettura
In recent years, there has been a tremendous amount of research activity in the general area of population dynamics, particularly the Lotka-Volterra system, which has been a rich source of mathematical ideas from both theoretical and application points of view. In spite of the technological advances, many authors seem to be unaware of the bulk of the work that has been done in this area recently. This often leads to duplication of work and frustration to the authors as well as to the editors of various journals. This book is built out of lecture notes and consists of three chapters written by four mathematicians with overlapping expertise that cover a broad sector of the research in this area. Each chapter consists of carefully written introductory exposition, main breakthroughs, open questions and bibliographies. The chapters present recent developments on topics involving the dynamic behavior of solutions and topics such as stability theory, permanence, persistence, extinction, existence of positive solutions for the Lotka-Volterra and related systems. This fills a void in the literature, by making available a source book of relevant information on the theory, methods and applications of an important area of research.