Più di un milione di libri, a un clic di distanza!
Bookbot

Olga Krupková

    The geometry of ordinary variational equations
    Differential Geometry and Its Applications
    • This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture "Leonhard Euler -- 300 years on" by R Wilson. Notable contributors include J F Cariñena, M Castrillón López, J Erichhorn, J-H Eschenburg, I Kolář, A P Kopylov, J Korbas, O Kowalski, B Kruglikov, D Krupka, O Krupková, R Léandre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Muñoz Masqué, S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slovák, J Szilasi, L Tamássy, P Walczak, and others.

      Differential Geometry and Its Applications
    • The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.

      The geometry of ordinary variational equations