Più di un milione di libri, a un clic di distanza!
Bookbot

J L Bell

    John Bell approfondisce i regni della logica e della filosofia della matematica. Il suo lavoro esplora domande profonde sulla natura della verità e delle strutture matematiche. Bell indaga come i sistemi formali e i principi logici plasmino la nostra comprensione dei concetti matematici. Il suo approccio è caratterizzato dalla sua rigorosa natura analitica e dal suo perseguimento nel collegare la teoria astratta con le sue implicazioni filosofiche.

    Models and Ultraproducts. An Introduction
    Set Theory
    Models and Ultraproducts
    • Models and Ultraproducts

      • 336pagine
      • 12 ore di lettura

      Geared toward first-year graduate students, this text assumes only an acquaintance with the rudiments of set theory to explore homogeneous universal models, saturated structure, extensions of classical first-order logic in terms of generalized quantifiers and infinitary languages, and other topics. Numerous exercises appear throughout the text. 1974 edition.

      Models and Ultraproducts
    • Set Theory

      Boolean-Valued Models and Independence Proofs

      • 214pagine
      • 8 ore di lettura

      Focusing on significant results in set theory from the 20th century, this second edition explores the independence of the continuum hypothesis and the axiom of choice. It is tailored for graduate students and researchers across mathematics, logic, philosophy, and computer science. The updated content features expanded introductory material, new chapters, and a category theory appendix, along with recent developments and numerous exercises. This edition enhances accessibility for students in logic and set theory with additional corrections and updated background information.

      Set Theory
    • The aim of this book is to provide an elementary exposition of some of the basic concepts of model theory. Model theory, which can be described briefly as the study of the relationship between formal languages and abstract structures, covers a very wide field and it is not possible to compress it into one volume. We have chosen as our theme the ultraproducts construction. We hope this book we be of use to undergraduate and practicing mathematicians

      Models and Ultraproducts. An Introduction