Bookbot

Neural Information Processing: New Directions in Statistical Signal Processing

From Systems to Brains

Parametri

  • 544pagine
  • 20 ore di lettura

Maggiori informazioni sul libro

Leading researchers in signal processing and neural computation present work aimed at promoting the interaction and cross-fertilization between the two fields. Signal processing and neural computation have separately and significantly influenced many disciplines, but the cross-fertilization of the two fields has begun only recently. Research now shows that each has much to teach the other, as we see highly sophisticated kinds of signal processing and elaborate hierachical levels of neural computation performed side by side in the brain. In New Directions in Statistical Signal Processing, leading researchers from both signal processing and neural computation present new work that aims to promote interaction between the two disciplines. The book's 14 chapters, almost evenly divided between signal processing and neural computation, begin with the brain and move on to communication, signal processing, and learning systems. They examine such topics as how computational models help us understand the brain's information processing, how an intelligent machine could solve the cocktail party problem with active audition in a noisy environment, graphical and network structure modeling approaches, uncertainty in network communications, the geometric approach to blind signal processing, game-theoretic learning algorithms, and observable operator models (OOMs) as an alternative to hidden Markov models (HMMs).

Acquisto del libro

Neural Information Processing: New Directions in Statistical Signal Processing, Simon S. Haykin, José C. Príncipe, Terrence J. Sejnowski, John McWhirter

Lingua
Pubblicato
2006
product-detail.submit-box.info.binding
(Copertina rigida),
Condizioni del libro
In buone condizioni
Prezzo
20,49 €

Metodi di pagamento